INDIAN INSTITUTE OF TECHNOLOGY HYDERABAD

DEPARTMENT OF MATHEMATICS

	Assignment 2	Due date : 16.09.16	
Date : 12.09.16	MA 4020 : Linear Algebra	Max Marks: 30	
1. For any prime p , show that $\mathbb{Z}/p\mathbb{Z}$ is a field. Why the assumption p prime is required? If p is not a prime, then what can happen?			[5]
2. Prove that an arbitrary intersection of subspaces in a vector space is again a sub- space.			[3]
3. Let <i>A</i> be non-empty subset of a vector space <i>V</i> . Let <i>S</i> be a subspace of <i>V</i> . Prove that the following statements are equivalent:			[5]
1. A is a basis of S .			
2. Every element of ments of <i>A</i> .	S can be uniquely written as a li	near combination of ele-	
3. A is a maximal linearly independent subset of S .			
4. <i>A</i> is a minimal subset of <i>S</i> such that $sp(A) = S$.			
4. Show that a finite set can never be a vector space over an infinite field.			[2]
5. Show that <i>n</i> linearly independent vectors in \mathbb{R}^n forms a basis of \mathbb{R}^n . If you take these <i>n</i> vectors as column vectors of a matrix <i>A</i> , then show that <i>A</i> is invertible.			[5]
6. Show that set of all continuous functions on [0, 1] with values in ℝ is not a finite dimensional vector space over ℝ.			[5]
7. Prove that $\dim(L(V, W))$ $q \le \dim(W)$, define	$(V) = \dim(V)\dim(W)$. (Hint: For evolution V)	very $1 \le p \le \dim(V), 1 \le$	[5]
	$E^{p,q}(\alpha_i) = \begin{cases} 0 & i \neq q, \\ \beta_p & i = q, \end{cases}$		

where $\{\alpha_i\}_{i=1}^n$ and $\{\beta_j\}_{j=1}^m$ are a basis of *V* and *W*, respectively.